ODUS Ozone Dynamics Ultraviolet Spectrometer

Yukie Iida

August 15, 1996

National Space Development Agency of Japan

ODUS System Overview

- NASDA activities about UV ozone sensors
- Overview of Science
 - Scientific Objectives
 - Characteristics
- Overview of instrument

NASDA activities about UV ozone sensors

- 1993 Feasibility studies focused on UV array detectors for satelliteborne spectrometer have been finished
- 1994 Preliminary system studies of UV
 Ozone spectrometers including ODUS have been finished
- 1996 ODUS system design has been started and trial productions of critical components are now in preparation

Scientific objectives

- Global mapping of ozone
 - total ozone
 - stratospheric and tropospheric ozone
- Detection of volcanic SO2
 - total SO2 and vertical profile
 - boundary layer SO2
- Experimental detection of NO2
- Aerosol and cloud top height measurement

ODUS characteristics

- Simultaneous spectrum measurement with high resolution of 0.5 nm by array detector improves ozone measurement precision
- High horizontal resolution of 20 km makes possible to observe lower stratospheric dynamics

ODUS characteristics --continued

■ Wide wavelength coverage to 420 nm makes possible to detect atmospheric NO2, cloud height, and optical properties of aerosols

Base line specification for system design -- tentative

	Base line for system study	TOMS (reference)
Detector	1D Si PD array detector	PMT
Wave length	306—420 nm	308—360 nm
Band width	0.5 nm	1 nm
Sensitivity of polarization	< 3 %	< 5 %
Number of bands	228 continuous	6
S/N	TBD	> 30 at 308 nm
IFOV	20 km (1.6 deg)	44 km (3 deg)
Swath width	120 deg	120 deg
Calibration	Hg lamps & diffusers	Hg lamps & diffusers
Integration time	30 msec	5 msec
Data Rate	100 Kbps	736 bps
Weight	<40 kg	30 kg
Power	<65 W (peak),	14 W (average)
	<50 W(average)	
Size	300mm X 500mm X 500mm	

Weight estimate

In the case of IFOV = 20 km

Monochrometer Optics	4.1 kg
Foreoptics	5.0 kg
Scanning system electronics	2.75 kg
Calibration system	2.5 kg
Optical module subtotal	14.35 kg
Electronics module & housing subtotal	< 25 kg
Total	<40 kg

Consumption power estimate

In the case of IFOV=20 km

• @• @ Scan motor driver	5 W (average)
Heater	10 W (average)
Detector electronics	5 W (average)
Calibration lamps	3 W (peak)
Diffuser motor	10 W (peak), 0.1 W (average)
Optical module subtotal	33 W (peak), 20.1 W (average)
Electronics module subtotal	< 30 W (average)
Total	< 65 W (peak), < 50 W (average)

Detector specification for trial production -- tentative

Detector type	1 dimensional Si photo diode array	
Wavelength range	306 – 420 nm	
Size of pixel	0.26 X 0.26 mm	
Number of pixels	1 X 228 + dummy pixels for dark current	
	monitor	
Integration time	30 ms (simultaneous integration)	
Quantum efficiency	> 35 % (target, priority 306 - 335 nm)	
Operating temperature	between -25 and 50 • žon orbit	
Life	5 years	
Read out	CMOS correlated double sampling on chip	
Preamplifier	differential amp on chip to reduce dark	
	current	

Proto-type linear array detector

- Si-CMOS linear array detector
- Low level dark current
- UV sensitive

Si-CMOS detector board using of proto-type detector

Proto-type Si-CMOS detector board

Conceptual figure of optical system

Optical parameter analysis

F number	5.2		3.5		2.6	
Number of grooves	1900	per mm	1667	per mm	1667	per mm
Grating tilt angle	17	deg	15.5	deg	15.5	deg
Grating aperture	52	mm	70	mm	80	mm
Entrance slit off-	32	mm	47	mm	60	mm
axis distance						
Focal plane length	57	mm	47.8	mm	49.4	mm
Slit width	0.24	mm	0.208	mm	0.208	mm
Entrance aperture	1.83	mm	2.37	mm	3.19	mm

These parameters are selected in order that focal plane length is moderate like 50 mm

Ray tracing simulation

Ray tracing simulation

Scanning system trade off

	1				
	1D Array detector	2D array detector	2D Array detector		
	Whiskbroom	+Mechanical			
		Scanning			
		Whiskbroom			
Summary	1D Spectral scan	1D Spectral scan	1D Spectral scan		
		1D Along track scan	1D Cross track scan		
			no mechanical scan		
Pixels	228	228*12	228*80		
Power	Medium	Medium	Low		
Reliability	Medium	Medium	High		
Optical	good	Slit Aberration	Wide field lens		
performance			needed		
Integration time	30 msec	400 msec	3 sec		
Detector effective	> 90 %	75 %	75 %		
area					
Solar diffuser	OK	OK	Difficult		
Life	Depend on Scanner	Depend on scanner	Long		
Total estimate	OK	OK	Difficult		

Baseline is whiskbroom scanning(1D).

Counter measures to stray light

- Causes of stray light
 - Diffracted light except 1st order
 - Overflow from grating
 - Scattered light from optical parts and housing wall
- Counter measures
 - Suppression of reflection and scattering
 - Absorption of 0 order diffracted
 - Narrow entrance light flux

S/N analysis (preliminary)

Conceptual configuration

Schedule

